If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+54x-120=0
a = 24; b = 54; c = -120;
Δ = b2-4ac
Δ = 542-4·24·(-120)
Δ = 14436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14436}=\sqrt{36*401}=\sqrt{36}*\sqrt{401}=6\sqrt{401}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-6\sqrt{401}}{2*24}=\frac{-54-6\sqrt{401}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+6\sqrt{401}}{2*24}=\frac{-54+6\sqrt{401}}{48} $
| |3x+15|=6 | | 2x-13=x+22 | | 4x-24=2x-4 | | 3x-4x+6=2(x+12)+3 | | (2x+1)°=35 | | (2x+1)°=35° | | 3/2(c-1)=1/2(4c) | | -8/5x=48 | | 4+26d=-48 | | 5x-10=4x+25 | | 6.5*10^-5=x^2/(0.100-x)(0.100-x) | | 3(16x+8)+3x=0 | | -25=-3n+5n= | | 27-10x=12x+60 | | X2+8x+3+24=0 | | 9/2x-1/9=7/2x-19/9 | | 74=39(-6n-5) | | 7/x=2.3 | | 3(5x+2)=2(7x+6)-22 | | 12y+14=68=y | | 2(y-3)=-5-(4-5y) | | 0=40-16t^2 | | p=7-1/2 | | 12y+14=68.y= | | 6t-8=2(2t=1) | | 2(y-3)=-5-(4-4y) | | 87=p-7-1/2 | | 2x-16=15x-3 | | (2x+4)5=0 | | -2m=-16m | | 6x-8+2x=7x+9 | | 18/a=-6 |